Credit Bearing Research Opportunities in Biology
Student Presentations at NEURON, Quinnipiac University Medical School
Introduction
Research is of fundamental importance to Biology. Only through such investigations can biologists learn about the living world that surrounds us. The Department of Biology offers several opportunities for students interested in doing research. These opportunities provide close collaboration between the student and faculty sponsor. Often, research projects result in joint presentations at scientific meetings and/or joint publications in scientific journals.
How to Get Involved in Research
Determine what areas of research might interest you: Cell Biology, Molecular Biology, Ecology, Tissue Culture, Plant Studies... It is important to contact and discuss particular research possibilities with individual faculty members. If they approve your participation, they will provide a registration override that will allow you to register for the course. To find out more about research possibilities, see Faculty Research interests below. Find out about necessary commitments in the laboratory, field, and library. Learn of the specifics of particular projects. Also, attend Senior Seminar (BI 377/378) presentations and learn what other students and outside scientists are doing in their research.
Second, ask yourself if you have sufficient time to commit to a research project. While different projects have different time commitments, realize that research involves careful budgeting of your time. It is not unlike the time commitment an athlete must devote to a particular sport. Talk to potential faculty sponsors and determine time requirements for specific projects.
Third, plan ahead. Determine which semester would be best for your research commitment. Some students wish to start research in their sophomore or junior year, while others wait till their senior year. Please note that registration for research courses occurs at pre-registration time. So start early in planning your research--at least several weeks before pre-registration.
Courses that Deal with Research
BI 385 Research Methods in Biology
• Registration Form for BI 385
Faculty Research Interests
Dr. Jennifer Bonner Office: CIS 210C, Ext. 5089 jbonner@skidmore.edu
In order for the nervous system to function properly, neurons must make specific connections with their targets, which can be great distances away. Jennifer Bonner's research is focused on the mechanisms that are essential for axon guidance during nervous system development. Using zebrafish as a model system, she is using genetic and gene knockdown approaches to identify what genes are important for axon guidance, and how these genes may act together to lead neurons to their targets.
Dr. Jason Breves Office: CIS 110H, Ext. 5079 jbreves@skidmore.edu
Dr. Breves' research program leverages a variety of fish models (zebrafish, tilapia, killifish) to study how the endocrine system directs the transport of ions and water across osmoregulatory tissues such as the gill, kidney and gut. Dr. Breves and his students seek to reveal the mechanisms of action for several key hormones, namely prolactin and growth hormone. An additional focus of Dr. Breves' research is to understand the manner in which growth hormone, through interactions with insulin-like growth-factors, mediates a remarkable life-history transition (termed smoltification) in Atlantic salmon.
Dr. David Domozych Office: CIS 110E, Ext. 5075 ddomoz@skidmore.edu
David Domozych is a plant cell biologist who studies the extracellular matrix of primitive
green plants. His two main interests include the evolution and the biochemistry/cell
biology of cell wall polymers in the charophycean green algae, i.e., the group of
algae from which land plants are derived. His primary research tools include electron
microscopy, including immunocytochemical labeling and tomography, confocal laser scanning
microscopy, high resolution light microscopy and biochemistry. Recently, his lab has
collaborated with researchers from the University of Copenhagen, the National University
of Ireland and Cornell University in several projects dealing with the biochemical
characterization of pectins and arabinogalactan proteins from green algae.
Dr. Corey R. Freeman-Gallant Office: CIS 230A, Ext. 5086 cfreeman@skidmore.edu
Dr. Freeman-Gallant's research uses field and molecular techniques to explore the evolution of ecologically important traits in birds. In the field, he combines observational and experimental work with color-banded individuals to describe the selective environment shaping avian life histories. In the laboratory, he uses hypervariable genetic markers to describe patterns of gene exchange within and between populations. Current projects include a long-term study of sexually antagonistic selection on plumage traits in common yellowthroats and an investigation of the linkage between cell level processes (oxidative stress, telomere dynamics) and patterns of sexual selection on carotenoid based ornaments in birds.
Dr. Pat Hilleren Office: CIS 210A, Ext. 8301 phillere@skidmore.edu
Quality control and kinetic processing of RNA in Eukaryotic cells; relevant to functional expression of genetic information and to medical disorders caused by defects in RNA processing (regulation, transcription, splicing, editing, transport, turnover etc.) using yeast as a model organism.
Dr. Sylvia McDevitt Office: CIS 210B, Ext. 5076 sfranke@skidmore.edu
The focus of my research is different aspects of how bacteria interact with different
transition metals that might or might not be essential for life. For example, copper
and silver have long been known as antimicrobials. In a time of increasing antibiotic
resistance in pathogenic bacteria the use of metal surfaces to limit bacterial growth
becomes more and more important (e.g. in hospitals, food industry). However, several
bacteria have resistance mechanisms that enable them to tolerate these metal concentrations.
So, one part of my research focuses on copper/silver resistance mechanisms in bacteria.
On the other hand, many of these transition metals are essential for life. Another
aspect of my research focuses on the bacteria assure that enough metal ions are taken
up and how, in case of Salmonella typhimurium and zinc ions, the availability influences
the virulence of this bacterium.
Dr. Josh Ness Office: CIS 230C, Ext. 5080 jness@skidmore.edu
I am a community ecologist interested in the ways that plant-animal interactions change
in response external drivers such as landscape change (e.g., habitat fragmentation,
edge effects), climatic variation, and local biodiversity. Our research focuses on
parasitism, mutualism (reciprocally beneficial interactions between two species) and
biological invasions (the disruption of communities by the introduction of non-native
species). Research systems include temperature deciduous forests (such as the North
Woods), the streambanks of the rivers and streams in the upper Hudson watershed, and
the Sonoran Desert.
Dr. Bernard Possidente Office: CIS 110I, Ext. 5082 bposside@skidmore.edu
Dr. Possidente's general research area is the analysis of biological clocks underlying
the expression of circadian (daily-endogenous) rhythms using mice and fruit flies
as model systems: manipulation of rhythms in mice and fruit flies with genetic, pharmacological
and photoperiod treatments in order to identify and understand the functional properties
of circadian system in relation to genetic, physiological and behavioral mechanisms.
Dr. Monica Raveret Richter Office: CIS 230B, Ext. 5083 mrichter@skidmore.edu
Dr. Raveret-Richter's research is on the behavioral ecology of foraging and mate choice,
and on issues in conservation biology. Her field studies focus on social insects,
butterflies and their hostplants, and birds. In her laboratory, insects, fish, birds
and lizards are potential research subjects for a variety of behavioral and ecological
inquiries.